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ABSTRACT 

Suppose B is a type I C*-algebra admitting a diagonal D in the sense of 

Kumjian, and let E be the conditional expectation from B onto D. A 

subalgebra A of B is called t r i a n g u l a r  with diagonal 2) if ,4 n ,4* -- 2). 

THEOREM: Under the above assumptions the Jacobson radical of.4 equals 

the intersection of.A with the kernel of the conditional expectation E. 

Although the statement of the theorem is coordinate free, the proof 

requires the use of coordinates in essential ways. 

A theorem by Kumjian allows us to represent every C*-algebra admit- 

ting a diagonal as the U*-algebra of a certain groupoid. This enables us 

to apply the techniques of topological groupoids as developed by Renault 

and Muhly. A very convenient way of expressing a triangular subalgebra 

of the C*-algebra of a T-groupoid is given by the Spectral Theorem for 

Bimodules, due to Qui, which is a descendent of the Spectral Theorem for 

Bimodules due to Muhly and Solel, and to Muhly, Saito and Solel in the 

context of yon Neumann algebras. 

1. I n t r o d u c t i o n  

Kumjian introduced the notion of "diagonal subalgebra" of a C*-algebra in [K]. 

This generalizes the concept of the diagonal in the case when the C*-algebra 

is Mn(C), i.e. the algebra of n • n complex matrices. If 2) is an abelian C*- 

subalgebra of a unital C*-algebra A, then 29 is said to be diagonal in .A if 1 E 29 

and if: (i) there is a faithful conditional expectation E: A -* 29; and (ii) KerE = 

(spanNf(29))-, where NI(29 ) denotes the set of all free normalizers of 29, i.e. the 

set of elements a in .4 such that a29a* and a*29a are in 29, and a 2 = 0. If ,4 is 
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not unital, and if ~ denotes the C*-algebra obtained from .4 by adjoining a unit, 

then 79 is said to be diagonal in ,4 if ~ is diagonal in .A. 

If ,4 is a C*-algebra with diagonal 79, and if B is a closed subalgebra of ,4, then 

/3 is called t r i a n g u l a r  with diagonal 7) if B N B* = 7). 

Recall that the J a c o b s o n  radical  of a Banach algebra B is defined to be the 

ideal of all elements b in B such that ab is quasi-nilpotent for all a in B. In 

this work we study and describe the radical of a triangular subalgebra B of a 

C*-algebra ,4 in the case when ,4 is a type I C*-algebra. We show that in this 

case the radical may be described just as in the finite dimensional case. More 

precisely, our main theorem (Theorem 6.2) states that if ,4 is a type I C*-algebra 

admitting a diagonal 79 and if B is a triangular subalgebra of ,4 with the same 

diagonal 79, then the Jacobson radical of B equals the intersection of B with the 

kernel of the conditonal expectation E. That is, the radical of Y coincides with 

the collection of elements of B having "zero diagonal". Observe, too, that in this 

case B has the Wedderburn property, i.e. the radical of Y is complemented as a 

Banach space. 

Following a result of Kumjian in the above-mentioned work, every C*-algebra 

admitting a diagonal can be represented as the C*-algebra of a certain groupoid. 

This result allows us to apply the techniques of topological groupoids as developed 

by Renault and Muhly. Notice that, altl;lough we use groupoids as coordinates, 

the result does not depend on such coordinates, i.e., the statement is coordinate 

free. Yet the proof requires coordinates in essential ways. 

Next we recall some terminology and notation (with regard to groupoids we 

follow [M2]) used throughout this paper. Suppose ~ is a second countable, locally 

compact, r-discrete principal groupoid~ Recall that such a groupoid may be 

viewed as an equivalence relation over ~, the unit space of ~. 

Let S be a locally compact groupoid such that T acts freely and continuously on 

E so that T \ E  is Hausdorff. Suppose that r(t.x) = r(x) and s(t.x) = s(x), so that 

(z, y) E C ~ implies (t.z, t.y) E C 2, and suppose we also have (t .z)(s.y) = (ts).(zy). 

Then T \C  has the structure of a groupoid. If T \C  = ~ is principal and r-discrete, 

we call C an r -d i sc re te  pr inc ipa l  T - g r o u p o i d  over  T \ ~  = ~. Suppose ~ is 

an r-discrete principal T-groupoid over ~, and let X = ~. Let 

Cc(~, C) = {f  E Cc(~7), f ( t .x )  = t f (x)}  
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and 

~q(~) = {U C GI U - open, rlU and slU are 1 - 1}. 

Write 

N(E) := {f E C,(G, s supp(]') _c U, U E ~(G)}, 

De(E) := {f E U,(~, E)[ supp(f) C_ X} 

and 

gs(E) := {f e N(e)I y 2 = 0}. 

Then De(E) is isomorphic to Co(X), N(E) are the normalizers of De(E) and 
NI(E ) are the free normalizers of De(E). We write D(E) for Co(X). Theorem 3.1 

in [K] states that if E is an r-discrete, principal T-groupoid over g, then D(E) is 

a diagonal subalgebra in C~ed(~; E). Conversely, if A is a C*-algebra containing a 

diagonal D, then there is an (essentially) unique r-discrete, principal T-groupoid 

E over Q and an isomorphism (I) from A onto C*ed(~; s such that r  = D(E), 
where D(E) ~ Co(X) and X is the diagonal of g. 

Standing convention: From now on, every time we have a C*-algebra A admit- 

ting a diagonal D it will be implied that A is isomorphic to C*ed(~; E) and D is 

isomorphic to D(s without further clarification. 

An open subset P of ~ containing ~ is called a part ia l  o rder  if 7 ~ o • C 7) 

and if 7~AT ~-1 = 3. If, in addition, 'p(.j,p--1 = ~ ,  then T ~ is called a total order. 

In [MS] it was shown that if ~ is a measurewise amenable groupoid, then every 

triangular subalgebra A of C*(~) is the closure, in the C*-norm, of the set of all 

functions in Co(G) supported in P,  i.e. if A is a triangular subalgebra of C*(g) 

then A = A(P) for some open partial order P of ~. This result, known as the 

Spectral Theorem for Bimodules, was later generalized by Qiu [Q] for the case of 

a triangular subalgebra of the C*-algebra of a T-groupoid E over ~, provided it 

is type I. 

1.1 Remark: Because our C*-algebras are assumed to be separable, our group- 

oids are second countable. Therefore every quasi-invariant measure ~ is the 

direct integral of ergodic quasi-invariant measures. If C*(~; E) is type I, then 

every ergodic measure on ~ is concentrated in an orbit [Ra]. Renault [Rel] 

shows that every transitive measure (i.e. every measure concentrated in an orbit) 

is amenable. Therefore, if C*(~; E) is type I, then ~ is measurewise amenable. 
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Since we are interested only in groupoids such that C*(~; C) is type I, we will only 

deal with measurewise amenable groupoids. Recall that in this case C*(G; C) = 

c*rod( ; c). 0 

From now on all groupoids ~ will be locally compact 2nd countable measure- 

wise amenable r-discrete principal groupoids, and we will usually refer to ~ by 

X. 

In sections 2 and 3 we present some useful realizations of A(7~). Sections 4, 5 

and 6 are devoted to the proof of our main theorem. We proceed in three steps. In 

section 4, we describe the radical of a triangular subalgebra of an elementary C*- 

algebra (Theorem 4.1). We then describe the radical of a triangular subalgebra 

of a continuous trace C*-algebra (Theorem 5.2). In section 6 we conclude the 

proof (Theorem 6.1) for the general case of a triangular subalgebra of a type I 

C*-algebra. In section 7 we present some examples and we apply the results of 

the preceding sections to some specific analytic crossed products. 

2..A(7 )) as the  a lgebra  of  uppe r  t r iangular  matr ices  

In this section G will stand for the trivial groupoid, i.e. ~ = X x X with X 

discrete and ~ the counting measure on X. For every u in X, [u] = X. Let 7r be 

the representation of Co(G) in i2([u]) given by 

= 

y(=x 

for f in Cc(~) and ~ in ~2([u]). Since 7r(f) is a compact operator, for all f in 

Cr and ~r is irreducible ([MW1], Lemma 2.4), then C*(g, )~) --- K:(s ~)), 

where K:(g2(X,$)) denotes the ideal of compact operators in g2(X,X). On the 

other hand, since ~ is measurewise amenable, C*(~, A) = C*,ea(~) ([Rel]), and 

the operations in the C*-algebra C*(~, A) may be expressed in the same way as 

in the *-algebra Co(G) ([Rel], Proposition 4.2). 

Let ~ be a partial order in ~. Observe that ~ is, in fact, the graph of a 

partial order in X. Many authors use (X, <) for denoting a partially ordered 

set. Sometimes this notation proves to be more convenient, as in the following 

case. Given (X, <), a subset E of X is called increasing if, for each x E E and 

y E X, z < y implies y E E. Let 

L(X, <) = {El E is an increasing subset of X}, 
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and 

L(X, _<) = {QEJ E �9 L(X, _<)}, 

where QE denotes multiplication by 1E on g2(X). By [A], (Proposition 1.2.1), 

L(X, _<) is a subspace lattice. Theorem 2.1 below is reminiscent of results in [A], 

but because the space X involved is discrete, the proofs are easier. 

2.1 THEOREM: Let A = ..4(7:') be a triangular subalgebra of C*(~), where ~ = 

X x X,  with X discrete, A the counting measure on X,  and 7 ) a partial order in 

G. Let ~r be the representation of C*(G) on g2(Z) defined above. Let L(X, <_) be 

the lattice of projections in 12 (X), 

L(X, <) = {OEI E is an increasing s bset of x } .  

Then 

~r(A) = )C(12(X)) n Alg(L(X, _<)). 

Proof: We first show that ~r(A) C_ Alg(L(X, _<)), i.e. we show that if E is any 

increasing subset of X, and ~ is any function in 12(E), then 

~r(a)( e /2 (E) ,  for all a in .4. 

Equivalently, we show that < 7r(a)(, 77 > =  0, for every a E .,4, ~ e 12(E), and 71 

in the orthogonal complement of /2(E)  in 12(X). Let {e ,}zex be the canonical 

basis of 12(X), i.e. 
ez(y)= {1 i f x = y ,  

0 otherwise. 

Let E be any increasing subset of X, and assume y E E. It suffices to show that 

< 7r(a)%,ez >= 0 for all z not in E. 

But 

< > =  a(z, y), 

and if z is not in E, then z cannot be greater than y. This means that (z, y) ~ P ,  

and therefore a(z, y) = 0 for all a in A. 

Hence ~r(.A) C Alg(L(X, _<)), and since ~r(C*(~)) = IC(12(X)), we have that  

r (A)  c Alg(L(X, _<)) Cl IC(12(X)). 
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For the reverse inclusion observe that if K is in K:(12(X)), then there is an .f in 

C*(G) such that ~r(f) = K. Suppose K is in Alg(L). This means that for every 

increasing subset E of X and every x in E, 

But then 

< Ke~, % > =  0, for all y tg E. 

< Kex,ey > = <  r ( f )ex ,% >=  f (y,z)  = O. 

This shows that the support of f is contained in P,  so the reverse inclusion holds. 

Thus 

~(.a) = Alg(L(X, <)) n JC(l~(X)). t 

3. Bundle  represen ta t ion  of  A(~) 

The next result, Theorem 3.1, characterizes ~4(?) as the Co cross-sectional Ba- 

nach algebra of a certain Banach bundle. To present it, we need to recall certain 

facts about continuous trace C*-algebras and C*-bundles. 

In dealing with Banach bundles we are going to adopt the point of view of 

[FD]. Recall, however, that when the base space X is either locally compact or 

precompact, by a Theorem of Dal Soglio-H~ranlt, the concept of Banach bundles 

coincides with the concept of continuous fields of Banach spaces given in [Go] and 

in Chapter 10 of [Di]. 

We pause here to describe useful realizations of the irreducible representations 

of C*(G, s The details left unverified here may be found in [MW2]. For each u 

in X, f in Cr163 and { in 12([u]) define: 

T"(f)~(x) -- ~ f(c(x,y))~(y)w(x,y), 
~etul 

where c is a regular Borel cross section to the map j:  E ~ g and w is the 

associated cocycle on ~ with values in T. Then T ~ is an irreducible representation 

of C*(9, E). Furthermore if [u] = [v], then T" is unitarily equivalent to T" 

([MW2I, Lemma 3.2). 

Recall that a C*-algebra A is continuous trace if the ideal of continuous trace 

elements of A is dense in A. If A is a continuous trace C*-algebra, then its 

spectrum is locally compact and Hausdorff. Suppose C*(~, ~:) is a continuous 

trace C*-algebra. Then, by [Di] Theorem 10.5.4, it is isomorphic to the cross 
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sectional C*-algebra Co(X,X * B), where X is the spectrum of C*(~,~) and 

13 = {B(x)}xex is a C*-bundle of elementary C*-algebras over X. On the other 

hand, X is isomorphic to ~/G ([MW2], Proposition 3.3). Each B(x) is isomorphic 

to C*(~, ~)/Ker(TU), where T u is an irreducible representation of C*(~, ~) such 

that [u] = x. 

Let /~ be a bundle of C*-algebras over X. For each x in X, let Br(x) be a 

closed, not necessarily self-adjoint subalgebra of B(x). Let F be the set of all 

continuous cross-sections f of B such that f (x)  is in B'(x) for every x in X. 

Suppose that for every x in X the set {f(x)l f �9 F) is dense in B'(x). Then 

with the operations restricted from B, B ~ becomes a bundle of Banach algebras 

over X. We call it the subbund le  of  Banach algebras over X wi th  f ibers 

{B'(x)}. 

The following observation will be used in the sequel. 

3.1 Remark: Suppose X is discrete and ~ = X • X. Since every circle bundle 

over a discrete space is trivial, Proposition 4 of [K] implies that C ~ T x ~. 

Therefore C*(~; s is isomorphic to C*(~). I 

3.2 THEOREM: Let C*(~;E) be a continuous trace C*-algebra, let B be the 

bundle of elementary C*-a/gebras over X defined by C*(~; s and let �9 be the 

isomorphism taking C*(g;C) onto Co(X,X * B) described above. Let ,4 he a 

triangular subalgebra of C*(~; ~). Then there is a subalgebra bundle B ~ over X 

such that �9 takes A onto the Co cross-sectional Banach algebra Co(X,X * B~). 

Proo~ Assume A is a triangular subalgebra of C*(~; C), and let A = .A(P), 

where 7 v is an open partial order in G. Let B'(x) be the image of .4 in B(x). 

Then 

B'(x) = T"(A(:P)), where [u] = x. 

Our claim is that 

,4 = Co(X, X * B'), where B' = (B'(x)}x~x. 

We first show that each B'(x) is closed in B(x). Write 

T"(f)~(x) = E g,(x ,y)~(y)  
yEX 

where 

Ku(x,y) = f o c(x,y)w(x,u,y). 
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If f is an element of A, we have 

Supp(gu) ---- c-1(Supp(f)) n [u I • [u], 

and 

Let 

We have 

and therefore 

~- ' (Supp(/))  c c-~( j -~(p))  = p.  

:P[.] : :  ~ n [u] • [u]. 

Supp(K,) C_ P[u], for all f in A, 

T"(A(7))) = A(P[~]). 

Observe that A(7~[u]) is actually a subalgebra of C*(~][~];g][~l). Since gl[u] is 

a transitive and principal subgroupoid of g with unit space [u], and since [u] is 

discrete, 3.1 implies that C*(~[M; E][~]) is ismorphic to C*(g][u]). Since g][~l is 

a transitive subgroupoid of ~, Theorem 2.1 shows that 

T"(A(P)) = A(P[,]) =/C(/2([u])) N Alg(L). 

Hence, B'(x) is closed in B(x). Observe, too, that if 

ro = {r f e .4(~)}, 

then F0 is a collection of continuous cross sections of X * B t satisfying the con- 

ditions of Theorem 13.18 of [FD]. Therefore B' = (X * B ~, ~r) is a Banach bundle 

over X. Furthermore Co(X,X * B') is a subalgebra of Co(X,X * B). It is clear 

that A may be embedded, via ~, in Co(X,X * IY). Suppose that the image of 

A(P) by r is a proper subalgebra of Co(X,X * B'), i.e. that there is a non-zero 

continuous cross section ~ such that ~a(x) �9 B'(x) for all z, ~(x) tends to zero at 

infinity, and that there is a non-zero element f of C*(~; E), such that jr r .,4(P), 

and such that r  = ~a. This means that there is an element 7 r J- l (T0 such 

that f(7) # 0. Let u = r(7). Then 

B([T']) = C*(~; s u) 

and B'([T']) is the image of .A(~) in B([T']). But since f('y) # 0, f is not in 

the kernel of T ' ,  and since T ' ( f )  is not in Tu(A(:P)) this implies that r  

B'(x), x = [T']. This contradiction shows that, in fact, 

r = C o ( X ,  x �9 B ' ) .  �9 
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4. T h e  radica l  of  a t r i a n g u l a r  suba lgeb ra  of  an  e l e m e n t a r y  C*-algebra  

4.1 THEOREM: Let .4 be a triangular subalgebra of C*(~), where ~ = X x X, 

with X discrete. Then the Jacobson radical of.4 equals the set 

{a E -4i a(x, x) = 0 for a11 x in X}.  

Proof'. We know that there is an open partial order 50 in ~ such that -4 = .4(50). 

We begin by showing that the desired result holds when 50 is a total order in ~. 

Let ~r be the representation of C*(G) into 12(X) given by 

By (2.1), we know that 

= f ( x , y ) { ( y )  
yEX 

~r(A) = 1C(12(X)) N Alg(L), 

where L = {QE[E is an increasing subset of X}. Since 50 is assumed to be a 

total order, Alg(L) is a nest algebra. Applying [Da], Corollary 6.9, a compact 

operator in a nest algebra belongs to its radical if and only if it is zero on the 

atomic part of the diagonal. But since in this case the diagonal is purely atomic, 

the operator must be zero on the diagonal. Let 

�9 ,40(50) := {a E -4(50)[ a(x,x) = 0 for all x in X) .  

Since r(A(50)) is an ideal of Alg(L), we have 

= n J(Alg(L)) 

= {a e -41 a(x,x) = 0 for all x in X} 

= -40(50) ,  

where J denotes the Jacobson radical. This shows that the desired result holds 

when 50 is a total order in G. 

Let 50 denote now a partial order and consider -40(50). It is an ideal of ,4(50) 

and hence it is enough to show that every element of -40(50) is quasi-nilpotent 

to prove that it is contained in the Jacobson radical of .4(5 o) ([BD], Proposition 

III. 16 iii)). P can be extended to a total order 50T. Clearly we have 

-40(50) c -40(pr). 
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By what was just proved, 

L . B .  M A S T R A N G E L O  

Ao('PT) = J(,4(PT)). 

Isr. J. Math. 

Therefore every element in AO(PT) is quasi-nilpotent. In particular, Ao(P) con- 

sists solely of quasi-nilpotent elements. Thus 

,40(9) c 

Conversely, ,4(79)/,4o(P) is isomorphic to Co(X), which is semisimple. This 

shows that the radical of A(P) is contained in ,40(P), and so 

,40(9)  = s ( , 4 ( p ) ) ,  i 

5. The radical of  a triangular subalgebra of  a continuous trace C*- 

algebra 

Suppose X is a locally compact Hausdorff space, and (X * `4, 7r) is a bundle 

of elementary C*-algebras over X, i.e. each A(x) is isomorphic to the compact 

operators on some Hilbert space. Consider the cross sectional C*-algebra of 

A. Let B be a subbundle of Banach algebras of `4. Observe that in this case 

the primitive ideal space of Co(X,X * ,4) is X (This follows easily from the 

analysis in [Di], w The following result will be useful in the proof of our 

main theorem. It will be used for describing the radical of certain subalgebras of 

certain continuous trace C*-algebras. 

5.1 LEMMA: Under the above assumptions, the Jacobson radical of Co(X, X *B) 

equals Co(X,X * J(B)), where J(B(x)) denotes the radical os B(z) for each z in 

x ,  and = 

Proof: Observe that if f is in the radical of Co(X, X * B), then, 

r(fg) = O, for all g in Oo(X,X * B), 

where r denotes the spectral radius. But the equation 

r(fg) = lim sup [[(f(x)g(x))nll 1In = O, 
n z6X 

implies 

limll(f(x)g(x))-II 1/- = 0, for all x in X. 
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Therefore 

r(S(z)g(z)) = 0 for all z in X and g(z) in B. 

Thus f is in Co(X,X * J(B)). 

To prove the reverse inclusion observe that since Co(X,X * J(B)) is an ideal 

of Co(X,X * B), it suffices to show that every element S in Co(X,X * J(B)) is 

quasi-nilpotent. Suppose f E Co(X, X * J(B)) is not quasi-nilpotent and choose 

I ~ 0 in the boundary of the spectrum S as an element in Co(X,X *B). Then 

lies in the spectrum of f as an element of Co(X, X * A) ([Ri], Theorem 1.6.12). 

By hypothesis I does not belong to the spectrum of f(x) with respect to A(x) 

for every x in X, so by definition for every x in X, f (x) /X is quasi-regular, i.e. 

f / ~  is quasi-regular modulo each primitive ideal of Co(X, X * .4). By Riekart 

([Ri], Theorem 2.2.9), f / $  is quasi regular in Co(X,X * .A), so by definition, 

is not in the spectrum of f as an element of Co(X, X * .A). This contradiction 

completes the proof. I 

5.2 THEOREM: Let C be an r-discrete, principal T-groupoid over Q, assume that 

C*(~; E) is a continuous trace C*-algebra, and let A be a triangular subalgebra 

of C*(9; ~:). Then the Jacobson radical of .A equals the intersection of.A with 

the kernel of the conditional expectation E from C*(g; ~:) onto C*(9). 

Proof." Suppose C*(~; E) is continuous trace and let X be its spectrum. Then X 

is homeomorphic to 3 / 6  ([MW2], Proposition 3.3). Each ~ E X may be viewed 
O 

as [T =] for some u in ~, where as before, T ~ acts on 12([u]) by the formula 

T=(f)((x) = E Ku(x,y)((y) 
yEX 

where 

Ku(x,y) = S o c(x,y)w(x,u,y). 

Applying [q], we write .A = A(P) as the closure of the set 

{S e C)l Supp(f) c 

for a suitable partial order ~. As was already observed in the proof of Theorem 

3.2, if we let 

~[u] := ~ n [u] • [u], 
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then 

T"(A(P)) = A(P[=]), 

and .A(P[,I) is actually a subalgebra of C*(~l[u]; s which is isomorphic to 

C*(g[[~]). Since g[[-] is a transitive subgroupoid of ~ the radical of A(P[,]) is 

the set 

(2.1) {a E .A('P[u])I a(x,x) = 0, for all x in [u]}. 

Recall that C*(~ ; s  represented as Co(X,X * B), where Z = ~ / ~  is the 

spectrum of C*(Q; s and B is a bundle of elementary C*-algebras over X. 

Furthermore, by (3.1) 

A(P) = Co(X, X * tr), 

where B' is a bundle of Banach algebras over X. Recall, also, that we may take 

B'(x) = T=(A(P)), where [u] = z. 

Applying 4.1, the Jacobson radical of A is isomorphic to Co(X, X * J(B')), where 

and 

Thus 

J(B') = {J(B'(z))}=ex 

J(N'(x)) = {a e A(7~t=])I a(U,U) = O, for all y in [u] = x}.  

j ( ,4(7,))  = {a e ,4(7,)1 a(y ,y)  = 0} 

= Ker(E) Iq ,A(P). 

6. T h e  radical  o f  a tr iangular  suba lgebra  o f  a t y p e  I C*-algebra 

We now state and prove our main theorem as well as an immediate corollary. 

6.1 THEOREM: Let B be a type I C*-algebra admitting a diagonal 2) in the sense 

of Kumjian, and let A be a triangular subalgebra of B with the same diagonal 

2). Then the Jacobson radical of A, J(A), equals the intersection of A with the 

kernel of the conditional expectation E from B onto ~). That is, J(.A) coincides 

with the collection of elements in A having "zero diagonal". 

Proof: Since E has a diagonal, there is an r-discrete principal T-groupoid s over 
O 

g, and an isomorphism r from B onto C'red(G; e) taking V onto C*(~) ([K], 
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Theorem 3.1). Since B is type I, ~ is measurewise amenable, so C*red(~; s = 

C*(G; g) (Remark 1.1). 

On the other hand, since B is type I, it has a composition series (Io)0_<p_<~ 

such that I0 = 0, I~ = B and Ip+i/I  o are all continuous trace. Thus ([Re2], 
O 

Corollary 4.9), there is a family of open invariant subsets of ~, (Uo)o<_o<_,~ , where 

Up c_ U.+l, 0 ___ p < c~, and I .  = I(Up). 
Here IRe2], 

r  = c*(Glu.; EIu,), 

and 

where 

I(U.+I) 
I ( U . )  - C*(~71F.;EIF.), 

f , + ,  = U , + I \ V , .  

Since A is a triangular subalgebra of C*(~; g), there is an open partial order P 

in G such that A = A(P)  [Q]. Let 

Ao(7~lu,) := A ( P l v . )  n Ker(E).  

Then Ao(Plup) is an ideal of A(plu,) ,  and 

.Ao(Plv,+,) 
A0(Plu,) - Ao(PlF,+,) 

is a radical subalgebra of the continuous trace C*-algebra C*(GIF,+~ ; CIF.+~ ) (see 

5.3). 

Observe that [(U1) is a continuous trace C*-algebra and hence (see 5.2): 

J (A(PIv , ) )  = Ao(Plu,) .  

We use transfinite induction. Assume now that p is not a limit ordinal, and that 

( , )  J(A(7~]u.,)) = .40(Plu.,), for all p' < p. 

We have 

J(Ao(PIu. ) )  = J (A(PIu , ) )  c_ .Ao(Plu,), 
A(PlUe) (Remember this quotient is isomorphic to due to the semisimplicity of .%(7'lvp)" 

C*(Up) = Co(Up).) On the other hand 

.ao(Plu,_~) c_ J(.A(PIu,)), 
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since Ao(7~lu,_l) is an ideal of A(7)Iu,) consisting of quasi-nilpotent elements. 

Hence 

Ao(~lu,_,) c_ J(~0(~lu, ) .  

Therefore 

.A0('Plu,) is the homomorphic image of .A0(T)lu,_,) 
J(.4o(~lu,)) 

by the homomorphism that sends each coset a + A0(7~lv,_t) to a + J(Ao(PIu,)).  
But since the latter is a radical algebra, and the first one is semisimple, we 

conclude that 
A0(~lv,)  _ 0, 

J(Ao(7:'lv,)) 
and so 

J(A(~lu,)) = A0(Plv,). 

Suppose now that p is a limit ordinal and that (*) holds. We show that the 

same argument works also in this case. Here Ip is defined to be the closure of 

Up,<p Ip,. Then 

J(A( 'Plu,))  ~_ Ao('P) n U z,,, 
pl <~ p 

and since J(A0(Plv,)) is a closed ideal of A(PIv,), it follows that 

J(.4o(~l~,)) _~ A0(~lu,,),  p' < p. 

Also 

J(A0(~iu,))  = J(~t(~'lu,)) c ~o(~'lu,), 

due to the semisimplicity of ~ Therefore A0(P[up) " 

A~ is the homomorphic image of .A0(7~lu,,), 
J(Ao(7:'lup)) 

and we conclude that 

J(A(7='tu,)) = Ao(Plu,). | 

We state now a corollary which follows immediately from the preceding theo- 

rem. In the case in which the C*-algebra B is the analytic crossed product, this 

corollary generalizes Corollary 4.2.1 [M1]. We will see this in more detail in the 

next section. 
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6.2 COROLLARY: Let B be a non-antilimAnar C*-algebra admitting a diagonal 

:D, assume the associated groupoid is measurewise amenable, and let .4 be a 

triangular subalgebra of 13 with the same diagonal l). Then the radical of .A is 

12 On -zero. 

Proof." Assume B is isomorphic to C*(Q; E) and let I denote the type I part of 
o 

B. Then I is non-zero, and by IRe2] there exists an open invariant subset of 

such that I = I(U). Therefore, if .4 = A(P), then .4 N I is a nonzero ideal of .4 

whose Jacobson radical equals A0 ~ I. Set -To = A0 N I. Then 

J( Io)  = Io n J(,4) = x0. m 

6.3 Remark: We do not know if 6.2 is valid without the assumption that the 

groupoid is measurewise amenable. We know that in gener~ the correspondence 

between ideals in C*(G; E) and open invariant subsets of ~ breaks down in the 

nonamenable case, but we do not know whether if C*(~; E) is not antiliminary 

then there is an open invariant set U C ~ such that C*(G[u; Elu) is type I. This 

is really all we need. | 

7. Analyt ic  crossed p roduc t s  

In this section we give some examples and applications of the previous results. 

Let X be a locally compact Hausdorff space, and let 7" be a homeomorphism of 

X. Then a Z action on X is defined, where (n, z) --~ r"x. Since every homeomor- 

phism r of X determines an automorphism of Co(X), which we are going also to 

call r, a C*-dynamical system (Co(X), Z, r) is defined. This dynamical system 

determines a C*-algebra called the C*-algebra crossed p roduc t  and is also 

denoted C*(X, Z) or C*(X, r). Suppose that the action is free, i.e. that rnx • x 

for all x in X and all n # 0. Observe that C*(X, Z) admits a diagonal which 

is isomorphic to Co(X). Consider the subalgebra .A(X, r) which is the closure 

in the C*-norm of those functions in Cc(X x Z) supported in X x Z+. Then 

A(X, Z) is a triangular subalgebra of C*(X, Z) with respect to Co(X) called the 

analyt ic  crossed p roduc t  determined by the dynamical system. Muhly and 

Peters in [M1], [P1] and [P2] addressed the problem of finding the radical of the 

analytic crossed product in this particular case. We have just given a partial an- 

swer to that question in a more general context. That is, Theorem 6.1 identifies 

the radical of A(X, Z) when C*(X, Z) is type I. More generally, let H be any 
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discrete group acting freely on a locally compact Hausdorff space X such that 

C*(X, H) is type I, and let E be a subsemigroup of H such that ~ N ~-~ = {e}, 

where e is the identity in H. If we denote by .A(E) the analytic crossed product, 

then the radical of A(~) is described in Theorem 6.1. (For a definition of the 

analytic crossed product we refer the reader to [MM].) In this case the groupoid 

is the orbit equivalence relation {(x,tz)[z E X,t E ~}. The algebra A(~) is 

A(7 ~) and we see from Theorem 6.1 that 

J(A(~)) = J(~(~)) = {f E .AI.(~)[ f(x, e) = 0}. 

(Remember, elements in C*(X, H) may be viewed as functions on X x H, under 

the hypothesis that C*(X, H) is type I, and a function / lies in .A(E) if and only 

if f is supported in X x E .) 

To get a little clearer feel for our analysis recall that if H is a group acting on 

X, a compact subset K of X is called wander ing iff the set {tltK N K ~ 0} 
is compact in H. A point x in X is called wander ing if it has a wandering 

neighborhood. Observe that the set of wandering points is an open and invariant 

subset of X. 

Suppose we have a dynamical system (X, H). Let X* denote the subset of 

wandering points of X. Call it W1. Take now the complement of X* in X. Call 

it X1 and let X~' be the set of wandering points of X1. Let W2 = X* t3 Xt .  If 

we proceed this way using transfinite induction, we get a chain of open invariant 

subspaces of X: 0 = W0 C_ Wx C_C_ W2 c_ .... When the space X is locally 

compact and Hausdorff the chain stops in countably many steps ([GH] 7.19 and 

7.20). Suppose W~ is the open subspace of X such that W~ = W. r for all a > % 

Then the complement in X of W- r is called the center  of the transformation 

group. 

A result by Green [Gr] shows that C*(X, H) has continuous trace if and only if 

compact subsets of X are wandering. This result was later generalized by Muhly 

and Williams ([MW1] and [MW2]). Based on this result, observe the following: 
(1) The sets (Wp)0<p_<a are open, and therefore ([Re 3] Corollary 4.9) they corre- 

spond to an increasing family of ideals (Ip)0_<p_<~, where Ip = I(Wp) in C*(X, tt). 
(2) Each quotient is a continuous trace C*-algebra (since I(Wp)/l(Wp_l) is iso- 

morphic to I((X\Wp_I)*). (3) C*(X,H)/I. v is antiliminary. This means that 

C*(W.y, H) corresponds to the type I part of C*(X, H). If W-f is not empty (and 

if H is discrete), then the radical of A(E) is non-zero (6.3). If C*(X, H) is type 
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I, then the chain of ideals described above is the canonical composition series for 

C*(X,H). 
To illustrate the analysis just given, we have chosen an example of a dynamical 

system whose corresponding C*-algebra is type I but is not continuous trace. The 

example of the dynamical system was taken from [BS]. 

7.1 Example: Consider a dynamical system in an euclidean (zl, z2)-plane, whose 

phase portrait is as in Fig.1. Although the action here is that of a continuous 

group, we can think of each trajectory as being discrete. 

a$2 

Fig. 1. 

The unit circle contains a rest point p and an orbit 7 such that no point q 

in 7 has a wandering neighborhood. Consider the dynamical system obtained 

from this one by deleting the rest point p (the dynamical system is thus defined 

on R2\{p)).  It is easily seen that the transformation group C*-algebra corre- 

sponding to (R2\{p}, Z) is type I but not continuous trace. In fact the ideal 

of continuous trace elements of this C*-algebra is the closure in the C*-norm of 

those functions f in C,(R 2, Z) such that supp(f) is contained in X \ 7  x Z, where 

X = R2\{p}. By 6.2, the radical of A(Z+) is the closure of the set of funclons 

supported in X x Z+\{0}. 
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